首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4805篇
  免费   217篇
  国内免费   51篇
测绘学   122篇
大气科学   402篇
地球物理   1097篇
地质学   1773篇
海洋学   352篇
天文学   866篇
综合类   17篇
自然地理   444篇
  2022年   28篇
  2021年   63篇
  2020年   67篇
  2019年   90篇
  2018年   142篇
  2017年   149篇
  2016年   152篇
  2015年   133篇
  2014年   184篇
  2013年   259篇
  2012年   203篇
  2011年   266篇
  2010年   207篇
  2009年   261篇
  2008年   212篇
  2007年   189篇
  2006年   176篇
  2005年   174篇
  2004年   184篇
  2003年   161篇
  2002年   161篇
  2001年   77篇
  2000年   82篇
  1999年   65篇
  1998年   81篇
  1997年   61篇
  1996年   63篇
  1995年   60篇
  1994年   55篇
  1993年   62篇
  1992年   44篇
  1991年   39篇
  1990年   39篇
  1989年   40篇
  1988年   45篇
  1987年   48篇
  1986年   43篇
  1985年   56篇
  1984年   66篇
  1983年   50篇
  1982年   56篇
  1981年   47篇
  1980年   47篇
  1979年   46篇
  1978年   43篇
  1977年   37篇
  1976年   31篇
  1975年   32篇
  1974年   33篇
  1973年   31篇
排序方式: 共有5073条查询结果,搜索用时 31 毫秒
91.
With the increase in complexities of interplanetary missions, the main focus has shifted to reducing the total delta-V for the entire mission and hence increasing the payload capacity of the spacecraft. This paper develops a trajectory to Mars using the Lagrangian points of the Sun-Earth system and the Sun-Mars system. The whole trajectory can be broadly divided into three stages: (1) Trajectory from a near-Earth circular parking orbit to a halo orbit around Sun-Earth Lagrangian point L2. (2) Trajectory from Sun-Earth L2 halo orbit to Sun-Mars L1 halo orbit. (3) Sun-Mars L1 halo orbit to a circular orbit around Mars. The stable and unstable manifolds of the halo orbits are used for halo orbit insertion. The intermediate transfer arcs are designed using two-body Lambert’s problem. The total delta-V for the whole trajectory is computed and found to be lesser than that for the conventional trajectories. For a 480 km Earth parking orbit, the total delta-V is found to be 4.6203 km/s. Another advantage in the present approach is that delta-V does not depend upon the synodic period of Earth with respect to Mars.  相似文献   
92.
93.
Four samples (TL5b, TL11h, TL11i, and TL11v) from the pristine collection of the Tagish Lake meteorite, an ungrouped C2 chondrite, were studied to characterize and understand its alteration history using EPMA, XRD, and TEM. We determined that samples TL11h and TL11i have a relatively smaller proportion of amorphous silicate material than sample TL5b, which experienced low‐temperature hydrous parent‐body alteration conditions to preserve this indigenous material. The data suggest that lithic fragments of TL11i experienced higher degrees of aqueous alteration than the rest of the matrix, based on its low porosity and high abundance of coarse‐ and fine‐grained sheet silicates, suggesting that TL11i was present in an area of the parent body where alteration and brecciation were more extensive. We identified a coronal, “flower”‐like, microstructure consisting of a fine‐grained serpentine core and coarse‐grained saponite‐serpentine radial arrays, suggesting varied fluid chemistry and crystallization time scales. We also observed pentlandite with different morphologies: an exsolved morphology formed under nebular conditions; a nonexsolved pentlandite along grain boundaries; a “bulls‐eye” sulfide morphology and rims around highly altered chondrules that probably formed by multiple precipitation episodes during low‐temperature aqueous alteration (≥100 °C) on the parent body. On the basis of petrologic and mineralogic observations, we conclude that the Tagish Lake parent body initially contained a heterogeneous mixture of anhydrous precursor minerals of nebular and presolar origin. These materials were subjected to secondary, nonpervasive parent‐body alteration, and the samples studied herein represent different stages of that hydrous alteration, i.e., TL5b (the least altered) < TL11h < TL11i (the most altered). Sample TL11v encompasses the petrologic characteristics of the other three specimens.  相似文献   
94.
Here we present the first proof of an impact origin for the Saqqar circular structure in northwestern Saudi Arabia (Neville et al. 2014 ), with an apparent diameter of 34 km, centered at 29°35′N, 38°42′E. The structure is formed in Cambrian–Devonian siliciclastics and is unconformably overlain by undeformed Cretaceous and Paleogene sediments. The age of impact is not well constrained and lies somewhere between 410 and 70 Ma. The subsurface structure is constrained by 2‐D reflection seismic profiles and six drilled wells. First‐order structural features are a central uplift that rises approximately 2 km above regional datums, surrounded by a ring syncline. The crater rim is defined by circumferential normal faults. The central uplift and ring syncline correspond to a Bouguer gravity high and an annular ring‐like low, respectively. The wells were drilled within the central uplift, the deepest among them exceed 2 km depth. Sandstone core samples from these wells show abundant indicators of a shock metamorphic overprint. Planar deformation features (PDFs) were measured with orientations along (0001), {103}, and less frequently along {101} and {104}. Planar fractures (PFs) predominantly occur along (0001) and {101}, and are locally associated with feather features (FFs). In addition, some shocked feldspar grains and strongly deformed mica flakes were found. The recorded shock pressure ranges between 5 and 15 GPa. The preserved level of shock and the absence of an allochthonous crater fill suggest that Saqqar was eroded by 1–2 km between the Devonian and Maastrichtian. The documentation of unequivocal shock features proves the formation of the Saqqar structure by a hypervelocity impact event.  相似文献   
95.
A large shock‐induced melt vein in L6 ordinary chondrite Roosevelt County 106 contains abundant high‐pressure minerals, including olivine, enstatite, and plagioclase fragments that have been transformed to polycrystalline ringwoodite, majorite, lingunite, and jadeite. The host chondrite at the melt‐vein margins contains olivines that are partially transformed to ringwoodite. The quenched silicate melt in the shock veins consists of majoritic garnets, up to 25 μm in size, magnetite, maghemite, and phyllosilicates. The magnetite, maghemite, and phyllosilicates are the terrestrial alteration products of magnesiowüstite and quenched glass. This assemblage indicates crystallization of the silicate melt at approximately 20–25 GPa and 2000 °C. Coarse majorite garnets in the centers of shock veins grade into increasingly finer grained dendritic garnets toward the vein margins, indicating increasing quench rates toward the margins as a result of thermal conduction to the surrounding chondrite host. Nanocrystalline boundary zones, that contain wadsleyite, ringwoodite, majorite, and magnesiowüstite, occur along shock‐vein margins. These zones represent rapid quench of a boundary melt that contains less metal‐sulfide than the bulk shock vein. One‐dimensional finite element heat‐flow calculations were performed to estimate a quench time of 750–1900 ms for a 1.6‐mm thick shock vein. Because the vein crystallized as a single high‐pressure assemblage, the shock pulse duration was at least as long as the quench time and therefore the sample remained at 20–25 GPa for at least 750 ms. This relatively long shock pulse, combined with a modest shock pressure, implies that this sample came from deep in the L chondrite parent body during a collision with a large impacting body, such as the impact event that disrupted the L chondrite parent body 470 Myr ago.  相似文献   
96.
97.
The large, extensive tufa deposits of the semi‐arid Naukluft Mountains, Namibia are potentially important palaeoenvironmental indicators in an area with few proxy records. Tufas are reliable indicators of increased moisture availability, and have been shown to be amenable to 234U–230Th dating, although two challenges are detrital contamination and open‐system behaviour. Densely cemented tufa facies are good candidates for dating, minimising these problems. We report attempts to date five densely‐cemented units, which are only found rarely within the Naukluft deposits. We applied a detailed methodology using multiple subsample analysis, measurement of insoluble residues, application of ‘isochron’ mixing lines, and attempted open‐systems modelling, alongside observations of micromorphology and cathodoluminescence in order to assess the validity of any obtained dates. Surprisingly, densely cemented tufas were found not always to be suitable for dating. Two units contained detrital contamination, which could not be corrected for using a single leachate correction or ‘isochron’ methods. Two units contained ‘excess 230Th’. This could result under a closed‐system if initial (234U/238U) was sufficiently high. Alternatively this may be the result of open‐system behaviour, and loss of uranium, or incorporation of initial unsupported 230Th, which render samples unsuitable for 234U–230Th dating. Micromorphological appearance and cathodoluminescence behaviour are used to explore these possibilities. This study exemplifies the need for careful sample selection, and highlights the importance of analysing multiple subsamples from any tufa sample. The detailed methodology applied proves to be a powerful tool for identifying the range of problems that can be encountered when selecting suitable candidate samples for successful dating. It also shows that semi‐arid tufa sequences may contain very little material suitable for dating. A reliable age of c 80 ka was obtained for a banded unit within a large fluvial barrage, with less reliable dates suggesting tufa deposition during times since >350 ka through to the late Holocene. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   
98.
We present a combined 3-D geoelectric and seismic tomography study conducted on the large Åknes rockslide in western Norway. Movements on the slope are strongly influenced by water infiltration, such that the hydrogeological regime is considered as a critical factor affecting the slope stability. The aim of our combined geophysical study was to identify and visualize the main shallow tension fractures and to determine their effect on hydraulic processes by comparing the geophysical results with information from borehole logging and tracer tests. To resolve the complex subsurface conditions of the highly fractured rock mass, a three-dimensional set-up was chosen for our seismic survey. To map the water distribution within the rock mass, a pattern of nine intersecting 2-D geoelectric profiles covered the complete unstable slope. Six of them that crossed the seismic survey area were considered as a single data set in a 3-D inversion. For both methods, smoothing-constraint inversion algorithms were used, and the forward calculations and parameterizations were based on unstructured triangular meshes. A pair of parallel shallow low-velocity anomalies (< 1400 m/s) observed in the final seismic tomogram was immediately underlain by two anomalies with resistivities <13 kΩm in the resistivity tomogram. In combination with borehole logging results, the low-velocity and resistivity anomalies could be associated with the drained and water-filled part of the tension fractures, respectively. There were indications from impeller flowmeter measurements and tracer tests that such tension fractures intersected several other water-filled fractures and were responsible for distinct changes of the main groundwater flow paths.  相似文献   
99.
With accelerated melting of alpine glaciers, understanding the future state of the cryosphere is critical. Because the observational record of glacier response to climate change is short, palaeo‐records of glacier change are needed. Using proglacial lake sediments, which contain continuous and datable records of past glacier activity, we investigate Holocene glacier fluctuations on northeastern Baffin Island. Basal radiocarbon ages from three lakes constrain Laurentide Ice Sheet retreat by ca. 10.5 ka. High sedimentation rates (0.03 cm a?1) and continuous minerogenic sedimentation throughout the Holocene in proglacial lakes, in contrast to organic‐rich sediments and low sedimentation rates (0.005 cm a?1) in neighbouring non‐glacial lakes, suggest that glaciers may have persisted in proglacial lake catchments since regional deglaciation. The presence of varves and relatively high magnetic susceptibility from 10 to 6 ka and since 2 ka in one proglacial lake suggest minimum Holocene glacier extent ca. 6–2 ka. Moraine evidence and proglacial and threshold lake sediments indicate that the maximum Holocene glacier extent occurred during the Little Ice Age. The finding that glaciers likely persisted through the Holocene is surprising, given that regional proxy records reveal summer temperatures several degrees warmer than today, and may be due to shorter ablation seasons and greater accumulation‐season precipitation. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   
100.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号